1. Identify the slope from the points:

$$m = \frac{y_{a} - y_{1}}{x_{a} - x_{1}} = \frac{1 - 4}{-3 - (-3)} = \frac{-3}{0} = \frac{\text{Underfined}}{0}$$

2. Write the equation of a line in slope-intercept form that has a slope of 1/2 and passes through

3.) Write the equation of the line that passes through (2, 3) and (6, 4).

$$m = \frac{4 - 3}{0 - 3} = \frac{1}{4}$$

$$y = \frac{1}{3}x + \frac{5}{3}$$

$$(34, a)$$
 $(-0, -10)$
 $(34, -2.5)$
 $(-9, -18)$
 $(-1.5, 3)$
 $(-0, -10)$
 $(-0, -10)$
 $(-0, -10)$
 $(-0, -10)$
 $(-0, -10)$

Parallel and Perpendicular

Remember parallel lines have the same slopes so if you need the slope of a line parallel to a given line, simply find the slope of the given line and the slope you want for a parallel line will be the same.

Perpendicular lines have negative reciprocal slopes so if you need the slope of a line perpendicular to a given line, simply find the slope of the given line, take its reciprocal (flip it over) and make it negative.

$$\frac{-3 \cdot 1}{3} = \frac{-3}{3} = -1$$

WRITING PARALLEL & PERPENDICULAR EQUATIONS

What is this? Given an equation, you must create ANOTHER equation that is either parallel or perpendicular to this line, passing through a certain point.

Keep in mind the following points:

• Parallel equations have **UQUQ** slopes!

• Perpendicular equations have opposite RecipROCOL slopes!

EXAMPLE 1:

Write the equation of the line that passes through the point (-2, 7) and is

PARALLEL to the line y = -4x + 1

Parallel Lines

EXAMPLE 2:

Write the equation of the line that passes through the point ((3, -1)) and is PARALLEL to the line x - 3y = 9

Samu slopu

$$x-3y=9$$
 $m=\frac{1}{3}$ $(3,-1)$
 $-x$ $-x$
 $-3y=-x+9$
 -3
 $y=\frac{1}{3}x-3$
 $y+1=\frac{1}{3}(x-3)$
 $y+1=\frac{1}{3}x-1$
 $y+1=\frac{1}{3}x-1$

EXAMPLE 3:

Write the equation of the line that passes through the point (4, 3) and is

PERPENDICULAR to the line y = 2x - 4

$$m = \frac{a}{1} + m = -\frac{1}{a}$$

Perependicular Lines

$$\lambda - \lambda' = w(X - X')$$

EXAMPLE 4

Write the equation of the line that passes through the point (-5, 1) and is

PERPENICULAR to the line 5x + 3y = -21

$$\frac{3y = -5x - 31}{3}$$

$$Y-1=\frac{3}{5}(X+5)$$

 $Y-1=3$ $V+3$