Linear vs. Exponential Functions

Linear and exponential functions share many characteristics. This is because they are based on two different, but similar, sets of principles.

Example #1: The two tables below represent a linear function and an exponential function. **Part 1:** Which type is each function below? Explain how you arrive at your answer.

Exponential Regression - Stat Calc o

Part 2: Find equations in standard form for each of the functions from Example #1.

Table 1 Equation : _____ Table 2 Equation : _____

Part 3: Sketch the graph of each equation

Example 2: Consider the linear function y = 20x + 5 and the exponential function $y = 5(2)^2$. Make a sketch of their graphs. Which one of these grows faster?

Fuamula 2

Example 3

Which of the following functions would best describe the data in the table?

(3)
$$y = 5(2)^x$$

x	0	1	2	3	4
y	2	10	50	250	1250
	. 6		5 .	7	٠٢ -

Example 4: Find the equation of the exponential function, in $y = a(b)^x$ form for the function given in the table below.

x	0	1	2	3	4
y	10	30	90	270	810

Linear functions grow through while exponential functions grow through mult

Example 5: Write an equation of the function represented in the table below.

x	-1	0	1	2	3	4
f(x)	2 3	2	6	18	54	162

Type Oxponential Equation
$$y = 3.3^{\times}$$