Warm Up

November 20, 2018

1.) Write the product in standard form.

$$-9y^{4}+12xy^{4}$$

2.) Simplify the expression: $(2y + 1)^2$

3.) Simplify

Simplify:
$$(x-5)^2$$
 $(3x+y^2)(3x+y^2)$
 $(3x+y^3)(3x+y^2)$

Simplify the following:

Getting Ready for Factoring

WHAT IS FACTORING? separating a polynomial into a product.

Polynomials that cannot be factored are called <u>prime</u>

4 Types of Factoring

- 1.) GCF The first step of all factoring exercises!
- 2.) Grouping
- 3.) AC Method
- 4.) Difference of Squares

Polynomials that cannot be factored are called prime!

The "How" behind the GCF:

FACTORIN9 A 9CF

(Greatest Common Factor)

There are several factoring methods; the approach depends on the polynomial. We will start by identifying and factoring out the greatest common factor (GCF) of the polynomial.

Steps for Factoring a GCF:

Step 1: Identify the GCF of the polynomial:

- Check the coefficients for a GCF.
- Now look at the variables. A variable must be present in all terms to be a GCF. If a variable is present in all terms, take the one with the smallest exponent.

Step 2: Divide each term by the GCF and leave the remaining factors in parentheses

Step 3: Check your work by distributing!

Whatever you circle on both lists is your greatest common

factor!

Whatever you circle on both lists is your greatest common

factor!

GCF:

Factored Expression:

$$\begin{array}{c|c}
13.5x - 13y & 14.18a^2bc^2 - 48abc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00bc^3 & 00bc^3 \\
\hline
(5x - 13y) & 00$$

18.
$$12a^5b^2 - 36a^4b^3 - 6a^2b^2$$

$$\frac{21. \, m^3n - m^2n^2 + 5mn^3}{1011}$$
 $\frac{1}{1011}$
 $\frac{1}{1011}$
 $\frac{1}{1011}$
 $\frac{1}{1011}$
 $\frac{1}{1011}$
 $\frac{1}{1011}$

22.
$$16xy^2 + 28xy + 8y$$

4y(4xy+7x+a)

Recap – Rules for finding a GCF of a polynomial:

- 1) Look at coefficients first.
- 2) A variable must be common to all terms to be a GCF.
- 3) If a variable is common to all terms, take the one with the smallest exponent.
- 4) Divide all terms by the GCF to get the remainder in parentheses.

Factoring by Grouping (4 TERMS)

\$tep\$	Example		
Step 1: Group the first two terms to and the last two terms toget	$(x^3 + 7x^2) + 2x + 14$		
Step 2: Factor out the GCF for each	X ² (X+7)(+2)(X+7)		
Step 3: The GCF from each binomial and remaining binomial will be	$(X_9+9)(X+1)$		
Step 4: Use FOIL to check your answ	$x^{3}+7x^{9}+9x+1+$		
	2		
X	Xa	+9X	
+7	+JXg	+14	

Examples

- 3.) The GCF from each binomial becomes a factor and the "twins" becom one factor.
- 4.) Use FOIL to check your answer.

- 1.) Group the first two terms and the last two terms.
 - 2.) Factor out the GCF for each binomial.

3.)
$$w^3 - 5w^2 - 8w - 40$$

- 3.) The GCF from each binomial becomes a factor and the "twins" becom one factor.
- 4.) Use FOIL to check your answer.

- 1.) Group the first two terms and the last two terms.
 - 2.) Factor out the GCF for each binomial.

4.
$$\frac{(k^3 + 2k)(-5k - 10)}{(k^3 + 2k)(-5k - 10)}$$

 $\frac{4}{(k^3 + 2k)(-5k - 10)}$
 $\frac{4}{(k^3 + 2k)(-5k - 10)}$

CHALLENGE!

Rearranging Terms

Directions: Factor each polynomial by rearranging terms first, then use grouping.

Name _____ Block ____ Date ____

Factor the GCF in the polynomials below.

1.)
$$4x^2-10x$$

2.)
$$3x^5 - 39x^4 + 90x^3$$

Simplify the polynomial expressions below.

3.)
$$(ab^2)^{-4}$$

4.)
$$(5x^2y^3z^4)^3$$