Quadratic Equations Study Guide

Calculator Inactive

2.) What is the smallest of three consecutive positive integers if the product of the smaller two integers is cless than 4 times the largest integer?

3.) The larger leg of a right triangle is 4 inches longer than the shorter leg. The hypotenuse is 8 inches longer than the shorter leg. Use the Pythagorean Theorem to find the length of the shorter leg.

 $A_{3} = A_{3} - A_{3$

4.) A company models its net income, in thousands of dollars, with the function, $p(n) = 2n^2 + 6n - 108$, where x is the number of units of its product sold. How many units of its product does the company need to sell in order for the net income to equal \$0?

 $P(\pi) = 3\pi^{4} + 6\pi - 108$ $3\pi^{4} + 6\pi - 108 = 0$ $3(\pi^{4} + 3\pi - 54) = 0$ $3(\pi + 9)(\pi - 6) = 0$ $3(\pi + 9)(\pi - 6)(\pi - 6) = 0$ $3(\pi + 9)(\pi - 6)(\pi - 6)($

- 6.) What is the negative root of $y = 4x^2 36$?

 7.) What is the value of the larger zero of $y = 4x^2 + 10x 24$?
 - -3 $a(ax^{a}+5x-1a)$

 $4(x^{2}-9)=0$ (a) $(3x^{2}-3x+8x-13)=0$ 4(x+3)(x-3)=0 (a) x(3x-3)+4(3x-3)=0 4=0 x+3=0 x-3=0 (a) x(3x-3)(x+4)=0 (3x-3)(x+4)=0 (3x-3)(x+4)=0 (3x-3)(x+4)=0 (3x-3)(x+4)=0 (3x-3)(x+4)=0 (3x-3)(x+4)=0 (3x-3)(x+4)=0 (3x-3)(x+4)=0(3x-3)(x+4)=0

#1)
$$T_{1}=1$$
 $T_{1}=1$
 $T_{2}=1$
 $T_{3}=1$
 $T_{4}=1$
 $T_{4}=1$

#7)
$$T = 1S^{+} \text{ in } + T = 1S^{+} \text{ in } + T = 3^{nd} \text{ in } + T = 3^{nd} \text{ in } + T = 3^{nd} \text{ in } + T = 52$$

box/foil box/foil

PROJECTILE MOTION

- **1.** A soccer ball is kicked from the ground with an initial upward velocity of 90 feet per second. The equation $h = -16t^2 + 90t$ ives the height h of the ball after t seconds.
- _{1а.} [30.56 ft ь. <u>5.035 s</u>

- **b.** How many seconds will it take for the ball to reach the ground?
 - 190.5092 Roots I

$$-10t^{*}+90t=0$$

$$-2t(8t-45)=0$$

$$-2t=0$$

$$-3t=0$$

$$-3t=0$$

$$-3t=0$$

$$8t-45$$

$$+45+45$$

$$t=0$$

$$t=5.035$$

_{2а.} <u>1717).</u> ь. <u>5 SUC.</u>

a. Find the maximum height of the apple.

$$t = \frac{04}{3(-10)} = 3$$
 $h = -10(3)^{3} + 04(3) + 80$ $h = 144 + 14$

b. How many seconds will it take for the apple to reach the ground?

$$-10t^{a}+64t+80=0$$

$$-16(t^{a}-4t-5)=0$$

$$-16(t+1)(t-5)=0$$

$$-16=0 t+1=0 t-5=0$$

$$t=-1 t=5$$

- 3. In science class, the students were asked to create a container to hold an egg. They would then drop this container from a window 25 feet above the ground. The equation $h = -16t^2 + 25$, gives the container's height h after t seconds.
- 3a. <u>d 5 + +.</u> ь. <u>1. d 5 s v c.</u>

b. How many seconds will it take for the container to reach the ground?

$$-10(4745)$$

$$-1(10t^{8}-85)=0$$

$$-1(4t+5)(4t-5)=0$$

$$-1=0 4t+5=0 4t-5=0$$

$$t=-\frac{5}{4} t=\frac{5}{4}$$

- **4.** A penny is dropped off the Empire State Building, which is 1,250 feet tall. If the penny's pathway can be modeled by the equation $h = -16t^2 + 1250$, how long would it take the penny to strike a 6 foot tall person?
- 4

5.	Some fireworks are fired vertically into the air from the ground at an initial speed of 80 feet per second. The equation for this object's height \boldsymbol{h} at time \boldsymbol{t} seconds after launch is $\boldsymbol{h} = -16t^2 + 80t$. How long will it take the fireworks to reach the ground?	5
6	. The Apollo's Chariot, a rollercoaster at Busch Gardens, moves at 110 feet per second. The equation of the ride can be represented by the equation $h=-16t^2+101t+10.$ What is the maximum height reached by this ride?	6
7	7. Eva is jumping on a trampoline. Her height h at time t can be modeled by the equation $h = -16t^2 + 20t + 6$. Would Eva reach a height of 14 feet?	7

8.	An astronaut on the Moon throws a baseball upward with an initial velocity of
	10 meters per second, letting go of the baseball 2 meters above the ground.
	The equation of the baseball pathway can be modeled by $h = -0.8t^2 + 10t + 2$.
	The same experiment is done on Earth, in which the pathway is modeled by
	equation $h = -4.9t^2 + 10t + 2$. How much longer would the ball stay in the air
	on the Moon compared to on Earth?

8.			

Challenge!

One leg of a right triangle exceeds the other leg by four inches. The hypotenuse is 20 inches. Find the length of the shorter leg of the right triangle.

Challenge! One leg of a right triangle exceeds the other leg by four inches. The hypotenuse is 20 inches. Find the length of the shorter leg of the right triangle.