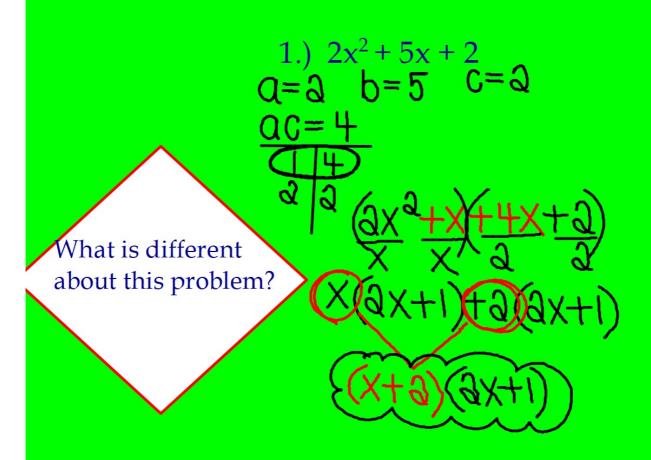
Warm-Up

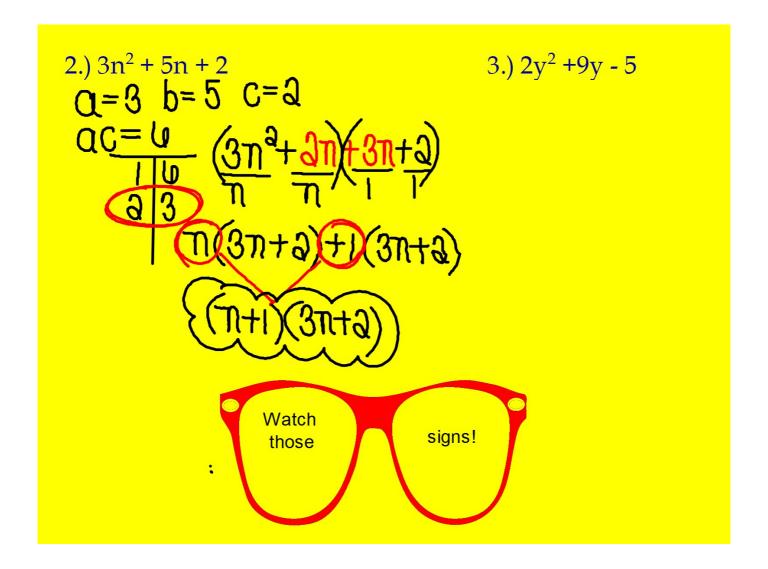
March 12, 2019

1. Factor
$$\frac{5x^2y}{5xy} - \frac{65xy^3}{5xy} + \frac{200xy}{5xy} \left(\frac{5xy}{5xy} \left(\frac{13y}{5xy} \right)^2 + \frac{40}{5} \right)$$

2. Factor:
$$\frac{4x^3y^3}{0Xy^3} - \frac{2x^2y^3}{0Xy^3} + \frac{8xy^3}{0Xy^3} = \frac{2x^2y^3}{0Xy^3} + \frac{8xy^3}{0Xy^3} + \frac{8xy^3}{0Xy^3} = \frac{2x^2y^3}{0Xy^3} + \frac{8xy^3}{0Xy^3} = \frac{2x^2y^3}{0Xy^3} + \frac{8xy^3}{0Xy^3} + \frac{8xy^3}{0Xy^3} = \frac{2x^2y^3}{0Xy^3} + \frac{8xy^3}{0Xy^3} + \frac{8xy^3}{$$

3. Which is a binomial factor of $(6x^2 + 3x) - 14x - 7?$


a.
$$(6x-1)$$
 b. $(2x-7)$ c. $(3x+1)$ d. $(3x-7)$


$$(3x-7)(3x+1).10 0.05$$

4. Clara collects dimes and nickels. She has a total of 47 (coins.) She counted the value of nickels and dimes and found out she has \$4.05.) Write a system of equations to model this scenario

$$\sqrt{d+\pi} = 47$$

 $0.10d + 0.05\pi = 4.05$

Factor each polynomial. Check your answer by distributing.

What if there is a GCF?

12.
$$60x^2 + 4x - 8$$